查看原文
其他

GSIS专辑征稿|Forest volume/biomass/carbon modelling


征稿主题

森林生态系统在人类生存环境、气候变化和碳循环中发挥着重要作用。对森林积蓄量(volume)、生物量(biomass)、碳含量(Carbon)的监测都是森林状态监测的重要内容。


过去三十年来,森林蓄积量/生物量/碳含量的测绘、建模和估算是研究热点,大量研究基于多尺度的遥感数据。来自具有不同分辨率的不同传感器(包括地面/移动/无人机/机载/星载激光雷达、雷达和光学系统)的可用数据,可为发展精确估计森林属性的新方法提供数据支撑。


基于此,Geo-Spatial Information Science(地球空间信息科学学报,GSIS)发起专辑“Forest volume/biomass/carbon modelling with multi-source data”。本专辑征集全球科学家利用多源数据、先进的统计建模和估算算法以及不确定性分析在森林蓄积量/生物量/碳估算方面的新进展。以期对近期森林生态系统相关研究进行总结,为气候变化、全球生态多样性提供科学依据。

Forest ecosystems play important roles in human living environments, climatic change, and carbon cycling. Mapping, modeling, and estimating forest volume/biomass/carbon has gained great attention in the past three decades, and considerable research has been conducted using remotely sensed data at different scales. Data from different sensors with different resolutions including ground/mobile/UAV/airborne/spaceborne Lidar, radar, and optical are available and provide new opportunities to develop novel methods for accurate estimation of forest attributes. The special issue solicitates new advances on forest volume/biomass/carbon estimation using multi-source data,  advanced statistical modeling and estimation algorithms, and uncertainty analysis


征稿方向

Advanced methods for forest volume/biomass/carbon modelling, mapping, and estimation

Advanced methods to employ multi-source data for forest volume/biomass/carbon estimation

Advanced methods to integrate multi-scale remotely sensed data for modeling forest volume/biomass/carbon

Approaches using time series of remotely sensed data to model forest volume/biomass/carbon dynamics

Impacts of forest disturbance on forest volume/biomass/carbon change

Uncertainty analysis for forest volume/biomass/carbon estimation

Comprehensive literature review on forest volume/biomass/carbon modeling


客座编辑


Dengsheng Lu  陆灯盛 

ludengsheng@fjnu.edu.cn

陆灯盛,福建师范大学教授。陆教授于2001年在印第安纳州立大学攻读自然地理专业博士学位,主修遥感和地理信息系统,曾在印第安纳大学(2001-2012)、奥本大学(2007-2008)和密歇根州立大学(2012-2018)工作。

他的研究兴趣包括基于遥感的森林生物量/碳估算、土地利用/覆盖变化和城市不透水表面制图,已发表130多篇期刊论文,被谷歌学术引用21066次。


Dengsheng Lu is a professor at Fujian Normal University, Fuzhou, China. He earned Ph.D. on Physical Geography with specialty in Remote Sensing and GIS from Indiana State University in 2001. He had worked at Indiana University (2001-2012), Auburn University (2007-2008), and Michigan State University (2012-2018). His research interests include remote sensing-based forest biomass/carbon estimation, land use/cover change, and urban impervious surface mapping. He has published 130+ Journal papers with google scholar citations of 21066.  


Qi Chen  陈  奇 

qichen@hawaii.edu

陈奇,夏威夷大学地理与环境系教授。陈教授于1998年和2001年在南京大学获得地理学士和硕士学位。2007年获得加州大学伯克利分校环境科学、政策和管理博士学位。2007年起历任UHM的助理教授(2007-2012年)、副教授(2012-2017年)和全职教授(2017年至今)。他的研究聚焦于激光雷达遥感和环境应用。他对激光雷达点云的信息提取、大空间尺度森林结构参数的建模、制图和估计、植被物种和树木个体的制图特别感兴趣。


Qi Chen is a Professor in the Department of Geography and Environment at the University of Hawaiʻi at Mānoa (UHM). He earned his B.S. and M.S. degrees in Geography from Nanjing University in 1998 and 2001, and Ph.D. degree in Environmental Science, Policy and Management from UC, Berkeley in 2007, respectively. Since 2007, he has been an Assistant (2007-2012), Associate (2012-2017), and Full (2017-present) professor at UHM. His research has focused on lidar remote sensing and environmental applications. He is particularly interested in the information extraction of lidar point clouds, the modeling, mapping, and estimation of forest structural parameters at large spatial scales, the mapping of vegetation species and individual trees.

Ronald E. McRoberts

mcrob001@umn.edu

Ronald E. McRoberts在明尼苏达大学获得生物统计学博士学位,并担任美国林业局进行的美国国家森林资源调查的数学统计学家。现任明尼苏达大学森林资源系兼职教授。他的研究兴趣包括森林调查、温室气体调查、利用遥感辅助数据和不确定性分析的基于模型和模型辅助推理


Ronald E. McRoberts has a PhD in Biostatistics from the University of Minnesota and has worked as a mathematical statistician for the American national forest inventory conducted by the U.S. Forest Service. He currently serves as an Adjunct Professor for the Department of Forest Resources, University of Minnesota. His research interests include forest inventory including greenhouse gas inventories, model-based and model-assisted inference using remotely sensed auxiliary data and uncertainty analyses.



重要时间节点

2021年11月15日

提交标题和摘要的截止日期(300字)

deadline for submitting titles and abstracts 

(300 words)

2022年7月30日

提交稿件的截止日期

deadline for submitting manuscripts

2022年10月30日

提交定稿的截止日期

deadline for submission of finalized manuscripts

2022年12月30日

收稿/拒稿的最终通知

final notification of acceptance/rejection


投稿须知

所有投稿将经过严格同行评审,并以开放获取(OA)的方式在Geo-Spatial Information Science(GSIS)上发表

建议作者按照GSIS杂志的作者说明编写手稿(www.tandfonline.com/tgsi

通过Taylor&Francis门户提交,确保选择适当的Special Issue(tandfonline.com

受邀稿件将免收出版费(APC)

需要豁免代码的作者请在论文提交之前联系编辑部:

gsis@whu.edu.cn

wangxz_gsis@whu.edu.cn


制作:王威 | 编辑:王晓醉 | 审核:张淑娟 






关于  Geo-spatial Information Science

Geo-spatial Information Science(GSIS)是由武汉大学主办的测绘遥感专业英文期刊,主编为中国科学院院士、中国工程院院士李德仁教授。2020年9月被SCI收录,2020影响因子为4.288,Q2分区。2020 CiteScore为7.4,Q1分区。


GSIS 采用开放获取的出版模式(Open Access),文章一经发表,可马上被全球读者免费全文下载,这种模式可以让你的文章有更多的曝光度。


欢迎广大测绘遥感学科的科研工作者投稿。如果您有需要抢首发权的高质量文章,可与我们联系gsis@whu.edu.cn,主编/国际副主编亲自为您处理,编辑部提供随时随地的疑问解答与状态跟踪。


期刊官网:

https://www.tandfonline.com/tgsi


投稿网址:

https://rp.tandfonline.com/submission/create?journalCode=TGSI



阅 读 推 荐


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存